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The multiplet structure of Debye-Scherrer rings and the 
splitting of Laue spots were observed recently in 
electron diffraction by several authors (Sturkey & 
Frevel, 1945; Hillier & Baker, 1945; Honjo, 1947; 
Cowley & Rees, 1947; Sturkey, 1948). Although these 
phenomena were explained by the refraction of the 
electron beam on the surface of micro-crystals of poly- 
hedral shape, it may require the dynamical theory of 
diffraction to understand them completely. The general 
formulation of the theory for a finite crystal, however, 
is very difficult (Ekstein, 1942). One of us (Kate, 1949) 
previously extended Bethe's theory of electron dif- 
fraction (Bathe, 1928) to the case of a wedge-shaped 
crystal with an infinite lateral extension, and discussed 
the refraction effects. We recently tried to extend the 
theory further to a finite crystal of polyhedral shape. 
In the present note we give a summary of our results. 

Diffract ion by a wedge- shaped  infinite crystal 

Let us first consider the case where a primary beam, 
whose wave function is expressed by 

¢~(r) = ~Fe exp 2ni(K~, r), (1) 

impinges on a wedge-shaped infinite crystal, and is 
reflected by a net plane represented by g. I f  we assume, 
for the sake of simplicity, the Laue case which is im- 
portant  in electron diffraction by micro-crystals, the 
waves in the crystal and in vacuum are determined by 
the boundary conditions at the entrance and the exit 
surface, as was shown in the previous paper (Kate, 
1949). Their wave-number vectors can be obtained 
graphically as follows. In Fig. 1, 0 is the origin of the 
reciprocal lattice and G is the reciprocal-lattice point 
which corresponds to the net plane g; L k and La are the 
kinematical and the dynamical Laue points re- 
spectively, and the hyperbola represents the dispersion 
surface. When the wave-number vector of the incident 

wave K~ = EO is given, two wave points of the crystal 
w a v e , / ) '  a n d / ) " ,  are determined by the condition of 
the tangential continuity of the wave-number vectors 

on the entrance surface, where D' / )  ~' is the direction of 
the normal of the surface of entrance of the incident 
wave. The wave-points of the diffracted waves in 
vacuum, A'  and .4", are obtained similarly by the con- 
dition on the exit surface with normal n~. These wave 
points determine the wave-number vectors as follows: 

Pr imary waves in crystal: 

- "  -"  = ~ " d .  k; = D O, k O 

Diffracted waves in crystal: 
- - !  ) 

~=~'0+g=D a, 
k~=ko+g=D"G. 

Diffracted waves in vacuum: 
> ) 

~ = g ' G ,  - "  -" K~=A G. 
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Fig. 1. Schemat ic  d iagram of  dispersion surfaces and  w a v e  
points.  (All the  vec tors  and  points  in this  d iagram are  their  
pro jec t ions  on OEG-plane.)  

n~: normal  of  the  incident  surface;  
na: normal  of  the  exit  surface. 

O L k = K ,  G L k = K ;  

OL d = ~{K 2 + Vo -- Vzl}, GLa = ~{K ~ + Vo-- V22 }; 
F I = u = - w W ,  where v 0, V H, V,2, w and W are the  Bethe ' s  

notat ions,  except  a numerical  factor  1/4n 2 in v 0, V n and 
V,2, and 1/2n in w. 

> )" > 

E D  >'=d~, E D " = d e ' ;  D ' ~ [ ' = d a ,  D " A ' = d a ;  

A ' A  = A~, = Ae. 

The appearance of two primary and diffracted waves in 
the crystal implies the so-called double refraction; this 
effect, however, is not observable when the crystal is 
bounded by two parallel planes where K:~ and K:~ coin- 
cide with each other. In the case of a wedge-shaped 
crystal, they are separated and the effect should be 
actually observable. Putt ing terms such as ~I(F/7 ), 
where P is the normal component of Ke and 7 is tha t  of 
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..... k'o, Yk~, rr~ or rr~, approximately equal to unity, the 
amplitudes of the two waves are 

~'~=W~{c'c"l(~"-~')}exp27ri(K~-k'°'R~) "I 
× exp 2.i(r - Re), 

VF~=W~{-a'~"l(a"-c')}exp27ri(K~-F%'Re) / (2) 

× rq, Ro),J 
where e' (or e ~) is the ratio of the amplitude of the dif- 
fracted wave k~ (or k~) to that  of the primary wave 
k '  0 (or ko), which is determined by the position of the 
wave point / ) '  (or/)"); and R, and R~ have the meaning 
shown in Fig. 2. 

Na Ko,.~ Kg 

E L E C T R O N  D I F F R A C T I O N  F O R  A F I N I T E  P O L Y H E D R A L  CRYSTAL.  I 

Fig.  2. Two-dimensional  schemat ic  d iagram of the  wedge-  
shaped crysta l  wi th  the  d iaphragms expla ined in the  text .  

S~: aper tu re  on the  incident  surface. 
Sa: aper tu re  on the  exit  surface. 
O: origin of  the  co-ordinate  (arbi t rar i ly  chosen). 
K~: incident  wave  in vacuum.  
K0: t r ansmi t t ed  wave  in vacuum.  
Kg: diffracted w a v e  in vacuum.  

O N ~  = R e ,  O N  a = R a . 

ab II a'b" II a" b" II K,. 

Effect of  diaphragm 

Let us consider, secondly, a case where both surfaces of 
the wedge are covered by opaque screens, each of which 
has an aperture of arbitrary shape and position. The 
crystal wave in this case is expressed by the general 
expression which is a superposition of plane waves as 
follows: 

r) = f~o(ko){exp 27ri(ko, r) + c' exp 2~i(k~, r)} ¢( dk' o 

? . + ;(k;){exp2~ri(k~,r)+c" exp27ri(l~,r)}dko, (3) 

where k o and 1~ (or k o and l~) ' " are the wave-number 
vectors of the primary and the diffracted waves re- 
spectively in the crystal determined by a wave point D' 
(or D") on the dispersion surface, and c' (or c") is the 
ratio of the amplitudes, as mentioned above. The 

f # l ~ # ~  l# 11 amplitudes, ~0tK0) and ~k0(k0) , in the integrals are deter- 
mined by the boundary conditions at the entrance 
aperture which state: 

¢~(r )=¢(r )  
gradn Oe(r)=grada~¢(r)t  on the aperture St'I/ (4) 

¢(r) = 0  on the diaphragm, ] 

where n_ e .means the outward normal of the entrance 

surface. By a simple calculation of Fourier integral, 
they turn out to be 

. . . . .  • l =tFe{c/(c -c )}L(Ke--IQ, Se), 
--c )}L(K _ko;  S~), ~ (5) ?0(k0) {_c,/(c , 

where the function L is the diffraction function of the 
aperture S and is expressed as 

L ( K -  k; S) =fsexp 27ri(K- k, r) dr. (6) 

By repeating the similar procedure at the exit aperture 
Sa, we derive the diffracted wave in vacuum as 

Cg(r) = f{W~(Kg) + W~(Kg)) exp 2~i(Kg, r )d l~ ,  (7) 

where I~  is A G shown in Fig. 1, and 

W'g(I~)= W, f {c'c"/(c"-c')} I 
x L(K~-- ko; Se) L ( k ~ -  Kg; Sa)dk'o, t 

/ 
× L(Ke-  k0; S,) L ( l ~ -  Kg; Sa)dko.l 

<'t l °' 

na 

Fig. 3. Two-dimensional  schematic  d iagram of  a po lyhedra l  
crystal .  

0 : origin of  the  co-ordinate  (arbi trar i ly chosen). 
Z:  common  region of  the  pro jec t ion  of  S e and S a on the  plane 

perpendicular  to K 8 passing through O. 

P :  an  a rb i t ra ry  po in t  on ~ and  s = O P .  

The formula (7) means that  the diffracted beam is not 
perfectly sharp, but  it is diffuse around the direction of 
Kg and Kg, and the behavmurs are given by (8). The 
expressions in (8) reduce to those of (2) when the aper- 
tures are infinitely extended, because the function L 
becomes a 3-type function which vanishes except at  
the poin ts / ) '  and / )" ,  and (7) is reduced to two plane 
waves corresponding to doubly refracted beams of 
perfect sharpness. When the apertures have finite 
extensions, L does not vanish at all points on the dis- 
persion surface. However, in the case of electron dif- 
fraction where the wave-length is very short (--~ 0.05 A.), 
it is vanishingly small except in the neighbourhood of 
/) '  a n d / ) "  (angular variation of wave vectors ~ 30') 
even for a quite small aperture (--~10A.). Since the 
Bragg angle is also small (< 5 °) in this case, the wave 
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function in the crystal almost vanishes in the shaded 
region in Fig. 2, and the wave which departs from the 
aperture Sa depends only on the wave function in the 
region a'b'b" a". 

Diffraction by a polyhedral crystal 

In the case of a polyhedral crystal, we divide the crystal 
as shown in Fig. 3; then we can calculate the wave 
functions for each division from (3) to (7). Their super- 
position satisfies approximately the boundary con- 
dition on the whole crystal surface by the above con- 
siderations and therefore represents the wave-field for 
a finite crystal of polyhedral shape according to the 

dynamical theory. Further calculation of (8) and com- 
parison with the kinematical theory will be given in the 
next note. 
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In the previous note (Kato & Uyeda, 1951), we have 
shown that Bethe's dynamical theory of electron dif- 
fraction (Bethe, 1928) can be extended to the case of a 
finite crystal. In the present note, we shall develop the 
theory further and compare its results with those 
derived from the kinematical theory. 

Dynamical  and kinematical formula for 
a polyhedral crystal 

The equation (7) of the previous note, which gives the 
diffracted wave due to one of the divisions of a crystal 
shown in Fig. 3 there, can be approximated by a more 
practical formula, provided the conditions described 
in the previous note are satisfied. The final formula for 
the diffracted amplitude at large distance, R, from the 
crystal turns out to be 

1 [V~ll 
Og(R) = 2iR ~/(u ~ + w e) exp 2niKR 

× [exp2ni{(d:,Re)+(d', ,Ra)}fzexp21ri(A'~,s)ds 

2--i (/jtt Re)-Aw(d:,Ra)}~ exp2fl'i(f[d,S)dSJ; - e x p  /i/(oe, 
Z 

(1) 
here V21 is Bethe's dynamical structure factor which is 
approximately equal to the Fourier coefficient Vg of the 
crystal potential, and w stands for 

(I V21 [/K)~]{kg, n~)/(ko, n~)}. 

The notations used are explained in the legends of 
Figs. 1 and 3 of the preceding note. 

On the other hand, the kinematical theory gives the 
expression of the amplitude diffracted by a finite crystal 
as follows: 

q~g(ll) = ~ vg exp 2rri(K e + g - Kg, r) dr, (2) 

where the integral covers the whole volume of the 
crystal, C. If  we consider the wave due to one of the 
divisions as above, the integration is limited to this 
division, and we can rewrite (2) as follows: 

k 1 ~ exp 2niKR 
q)g(R) = 2 -~  u 0 

x [exp 2ni(de, Re) f ~exp 2.i(A~, s) ds 

-exp2~i(da, Ra) f ~exp2ni(A~,s)dsJ, (3) 

where the notations are given in Fig. 1 of this note, and 
the other notations are the same as those in the previous 
note. 

Discussion by means o f  Intensitiitsbereich 

The interpretation of the kinematical formula (3) can 
be given most clearly by making use of the conception 
of Laue's Intensi~tsbereich (Laue, 1936) in Ewald's 
construction of the wave vector. This construction can 

be obtained in Fig. 1 if we transfer the vector Kg- A G 
by parallel displacement so that  the initial point A 
coincides with the point E. Then, the end-point G is 

displaced to a new point, say Q, and GQ=AE, which 


